Early in development, synapses with glycine or gamma-aminobutyric acid (GABA)-gated chloride channels exhibit the ability to depolarize postsynaptic cells. As the synapses mature and the gradient of chloride ions across the cell membrane is altered, these neurotransmitters signal an inhibitory response, hyperpolarizing the membrane and decreasing neuronal excitability. Kriegstein and Owens discuss how GABA-stimulated up-regulation of the expression of the potassium chloride cotransporter KCC2 may be the mechanism underlying this synaptic switch.